ধারা

সমান্তর ধারার ক্রমিক সংখ্যার যোগফল-
(যখন সংখ্যাটি1 থেকে শুরু)1+2+3+4+......+n হলে এরূপ ধারার সমষ্টি= [n(n+1)/2]
n=শেষ সংখ্যা বা পদ সংখ্যা s=যোগফল
প্রশ্নঃ 1+2+3+....+100 =?
 সমাধানঃ[n(n+1)/2]
= [100(100+1)/2]
= 5050
সমান্তর ধারার বর্গ যোগ পদ্ধতির ক্ষেত্রে,-
প্রথম n পদের বর্গের সমষ্টি
S= [n(n+1)2n+1)/6]
(যখন 1² + 2²+ 3² + 4²........ +n²)
প্রশ্নঃ(1² + 3²+ 5² + ....... +31²) সমান কত?
👍সমাধানঃ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31সমান্তর ধারার ঘনযোগ পদ্ধতির ক্ষেত্রে-
প্রথম n পদের ঘনের সমষ্টি S= [n(n+1)/2]2
(যখন 1³+2³+3³+.............+n³)
প্রশ্নঃ1³+2³+3³+4³+…………+10³=?
👍সমাধানঃ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
পদ সংখ্যা ও পদ সংখ্যার সমষ্টি নির্নয়ের ক্ষেত্রেঃ
পদ সংখ্যা N= [(শেষ পদ – প্রথম পদ)/প্রতি পদে বৃদ্ধি] +1
প্রশ্নঃ5+10+15+…………+50=?
সমাধানঃ পদসংখ্যা = [(শেষ পদ – প্রথমপদ)/প্রতি পদে বৃদ্ধি]+1
= [(50 – 5)/5] + 1
=10
সুতরাং পদ সংখ্যার সমষ্টি
= [(5 + 50)/2] ×10
= 275
 n তম পদ=a + (n-1)d
এখানে, n =পদসংখ্যা, a = 1ম পদ, d= সাধারণ অন্তর
প্রশ্নঃ 5+8+11+14+.......ধারাটির কোন পদ 302?
👍 সমাধানঃ ধরি, n তম পদ =302
বা, a + (n-1)d=302
বা, 5+(n-1)3 =302
বা, 3n=300
বা, n=100
★6)সমান্তর ধারার ক্রমিক বিজোড় সংখ্যার যোগফল-S=M² এখানে,M=মধ্যেমা=(1ম সংখ্যা+শেষ সংখ্যা)/2
🚩প্রশ্নঃ1+3+5+.......+19=কত?
👍 সমাধানঃ S=M²
={(1+19)/2}²
=(20/2)²
=100
⭕🚩 বর্গ👍
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
নিয়ম-যতগুলো 1 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে 1 থেকে শুরু করে পর পর সেই সংখ্যা পর্যন্ত লিখতে হবে এবং তারপর সেই সংখ্যার পর থেকে অধঃক্রমে পরপর সংখ্যাগুলো লিখে 1 সংখ্যায় শেষ করতে হবে।
🚩(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
👍যতগুলি 3 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 9 এবং 9 এর বাঁদিকে তার চেয়ে (যতগুলো 3 থাকবে) একটি কম সংখ্যক 8, তার পর বাঁদিকে একটি 0 এবং বাঁদিকে 8 এর সমসংখ্যক 1 বসবে।
🚩(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
👍যতগুলি 6 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 6 এবং 6 এর বাঁদিকে তার চেয়ে (যতগুলো 6 থাকবে) একটি কম সংখ্যক 5, তার পর বাঁদিকে একটি 3 এবং বাঁদিকে 5 এর সমসংখ্যক 4 বসবে।
🚩(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
👍যতগুলি 9 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 1 এবং 1 এর বাঁদিকে তার চেয়ে (যতগুলো 9 থাকবে) একটি কম সংখ্যক 0, তার পর বাঁদিকে একটি 8 এবং বাঁদিকে 0 এর সমসংখ্যক 9 বসবে।